Tính p-value
# Compute two-way ANOVA test
res.aov2 <- aov (stability ~ diet + time, data = my_data)
# summary(res.aov2)
anova (res.aov2)
Analysis of Variance Table
Response: stability
Df Sum Sq Mean Sq F value Pr(>F)
diet 7 15.999 2.286 2.5966 0.02672 *
time 1 142.822 142.822 162.2555 1.781e-15 ***
Residuals 39 34.329 0.880
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Compute two-way ANOVA test with interaction effect
res.aov3 <- aov (stability ~ diet + time + diet: time, data = my_data)
anova (res.aov3)
Analysis of Variance Table
Response: stability
Df Sum Sq Mean Sq F value Pr(>F)
diet 7 15.999 2.286 2.8340 0.02041 *
time 1 142.822 142.822 177.0920 1.37e-14 ***
diet:time 7 8.521 1.217 1.5094 0.19953
Residuals 32 25.807 0.806
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Phân hạng
library (agricolae)
LSD.test (res.aov2, c ("diet" , "time" ), console = TRUE )
Study: res.aov2 ~ c("diet", "time")
LSD t Test for stability
Mean Square Error: 0.8802287
diet:time, means and individual ( 95 %) CI
stability std r LCL UCL Min Max
NT1:10-min 89.49940 0.29641311 3 88.40376 90.59503 89.17712 89.76035
NT1:5-min 86.20000 1.48386449 3 85.10436 87.29564 84.50821 87.28091
NT2:10-min 89.12396 0.66835713 3 88.02832 90.21959 88.51183 89.83705
NT2:5-min 85.68620 1.00057733 3 84.59057 86.78184 84.58238 86.53363
NT3:10-min 89.18181 2.50740722 3 88.08617 90.27744 86.30768 90.92160
NT3:5-min 87.52492 0.92028383 3 86.42929 88.62056 86.48140 88.22052
NT4:10-min 91.05804 0.07653564 3 89.96240 92.15367 90.97900 91.13180
NT4:5-min 87.67940 0.23150732 3 86.58376 88.77504 87.41313 87.83304
NT5:10-min 90.58711 0.34015176 3 89.49147 91.68275 90.33636 90.97430
NT5:5-min 87.27551 0.48216583 3 86.17988 88.37115 86.72079 87.59405
NT6:10-min 90.45218 0.26375280 3 89.35654 91.54781 90.21814 90.73797
NT6:5-min 86.86873 0.39883737 3 85.77310 87.96437 86.45951 87.25631
NT7:10-min 90.67417 0.17203343 3 89.57853 91.76981 90.56533 90.87250
NT7:5-min 86.61908 0.65352540 3 85.52344 87.71472 85.88389 87.13404
NT8:10-min 90.66600 0.49282165 3 89.57036 91.76164 90.10980 91.04827
NT8:5-min 85.78958 0.83445867 3 84.69395 86.88522 84.82913 86.33665
Alpha: 0.05 ; DF Error: 39
Critical Value of t: 2.022691
least Significant Difference: 1.549465
Treatments with the same letter are not significantly different.
stability groups
NT4:10-min 91.05804 a
NT7:10-min 90.67417 ab
NT8:10-min 90.66600 abc
NT5:10-min 90.58711 abc
NT6:10-min 90.45218 abc
NT1:10-min 89.49940 bc
NT3:10-min 89.18181 bcd
NT2:10-min 89.12396 cd
NT4:5-min 87.67940 de
NT3:5-min 87.52492 e
NT5:5-min 87.27551 ef
NT6:5-min 86.86873 efg
NT7:5-min 86.61908 efg
NT1:5-min 86.20000 efg
NT8:5-min 85.78958 fg
NT2:5-min 85.68620 g
duncan.test (res.aov2, c ("diet" , "time" ), console = TRUE )
Study: res.aov2 ~ c("diet", "time")
Duncan's new multiple range test
for stability
Mean Square Error: 0.8802287
diet:time, means
stability std r Min Max
NT1:10-min 89.49940 0.29641311 3 89.17712 89.76035
NT1:5-min 86.20000 1.48386449 3 84.50821 87.28091
NT2:10-min 89.12396 0.66835713 3 88.51183 89.83705
NT2:5-min 85.68620 1.00057733 3 84.58238 86.53363
NT3:10-min 89.18181 2.50740722 3 86.30768 90.92160
NT3:5-min 87.52492 0.92028383 3 86.48140 88.22052
NT4:10-min 91.05804 0.07653564 3 90.97900 91.13180
NT4:5-min 87.67940 0.23150732 3 87.41313 87.83304
NT5:10-min 90.58711 0.34015176 3 90.33636 90.97430
NT5:5-min 87.27551 0.48216583 3 86.72079 87.59405
NT6:10-min 90.45218 0.26375280 3 90.21814 90.73797
NT6:5-min 86.86873 0.39883737 3 86.45951 87.25631
NT7:10-min 90.67417 0.17203343 3 90.56533 90.87250
NT7:5-min 86.61908 0.65352540 3 85.88389 87.13404
NT8:10-min 90.66600 0.49282165 3 90.10980 91.04827
NT8:5-min 85.78958 0.83445867 3 84.82913 86.33665
Alpha: 0.05 ; DF Error: 39
Critical Range
2 3 4 5 6 7 8 9
1.549465 1.629128 1.681203 1.718713 1.747311 1.769943 1.788331 1.803563
10 11 12 13 14 15 16
1.816368 1.827257 1.836601 1.844677 1.851698 1.857828 1.863200
Means with the same letter are not significantly different.
stability groups
NT4:10-min 91.05804 a
NT7:10-min 90.67417 ab
NT8:10-min 90.66600 ab
NT5:10-min 90.58711 ab
NT6:10-min 90.45218 ab
NT1:10-min 89.49940 ab
NT3:10-min 89.18181 bc
NT2:10-min 89.12396 bc
NT4:5-min 87.67940 cd
NT3:5-min 87.52492 cde
NT5:5-min 87.27551 def
NT6:5-min 86.86873 def
NT7:5-min 86.61908 def
NT1:5-min 86.20000 def
NT8:5-min 85.78958 ef
NT2:5-min 85.68620 f
HSD.test (res.aov2, c ("diet" , "time" ), console = TRUE )
Study: res.aov2 ~ c("diet", "time")
HSD Test for stability
Mean Square Error: 0.8802287
diet:time, means
stability std r Min Max
NT1:10-min 89.49940 0.29641311 3 89.17712 89.76035
NT1:5-min 86.20000 1.48386449 3 84.50821 87.28091
NT2:10-min 89.12396 0.66835713 3 88.51183 89.83705
NT2:5-min 85.68620 1.00057733 3 84.58238 86.53363
NT3:10-min 89.18181 2.50740722 3 86.30768 90.92160
NT3:5-min 87.52492 0.92028383 3 86.48140 88.22052
NT4:10-min 91.05804 0.07653564 3 90.97900 91.13180
NT4:5-min 87.67940 0.23150732 3 87.41313 87.83304
NT5:10-min 90.58711 0.34015176 3 90.33636 90.97430
NT5:5-min 87.27551 0.48216583 3 86.72079 87.59405
NT6:10-min 90.45218 0.26375280 3 90.21814 90.73797
NT6:5-min 86.86873 0.39883737 3 86.45951 87.25631
NT7:10-min 90.67417 0.17203343 3 90.56533 90.87250
NT7:5-min 86.61908 0.65352540 3 85.88389 87.13404
NT8:10-min 90.66600 0.49282165 3 90.10980 91.04827
NT8:5-min 85.78958 0.83445867 3 84.82913 86.33665
Alpha: 0.05 ; DF Error: 39
Critical Value of Studentized Range: 5.171129
Minimun Significant Difference: 2.801061
Treatments with the same letter are not significantly different.
stability groups
NT4:10-min 91.05804 a
NT7:10-min 90.67417 a
NT8:10-min 90.66600 a
NT5:10-min 90.58711 a
NT6:10-min 90.45218 ab
NT1:10-min 89.49940 abc
NT3:10-min 89.18181 abcd
NT2:10-min 89.12396 abcd
NT4:5-min 87.67940 bcde
NT3:5-min 87.52492 cde
NT5:5-min 87.27551 cde
NT6:5-min 86.86873 cde
NT7:5-min 86.61908 de
NT1:5-min 86.20000 e
NT8:5-min 85.78958 e
NT2:5-min 85.68620 e
Tham khảo
http://www.sthda.com/english/wiki/two-way-anova-test-in-r
https://stackoverflow.com/questions/43123462/how-to-obtain-rmse-out-of-lm-result
https://online.stat.psu.edu/stat501/lesson/2/2.6
https://rcompanion.org/handbook/G_14.html
RMSE (Root Mean Square Error) https://agronomy4future.org/?p=15930
https://stats.stackexchange.com/questions/445200/coefficient-of-variation-for-beween-groups
Sơ kết
Trên đây là format phân tích ANOVA 2 yếu tố trong R. Để học R bài bản từ A đến Z, thân mời Bạn tham gia khóa học “HDSD R để xử lý dữ liệu” để có nền tảng vững chắc về R nhằm tự tay làm các câu chuyện dữ liệu của riêng mình!
ĐĂNG KÝ NGAY: https://www.tuhocr.com/register
Hướng dẫn cài đặt package tuhocr
ở đường link https://tuhocr.github.io/